Miricorilant, a Selective Glucocorticoid Receptor Modulator, Reprograms Hepatic Gene Networks in Metabolic Dysfunction-Associated Steatohepatitis

Rafael Mayoral Monibas, Jan Kroon, Hazel J. Hunt, Aprille Espinueva, William Guyer, Kavita Juneja

¹Corcept Therapeutics Incorporated, Redwood City, California, USA; ²Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands

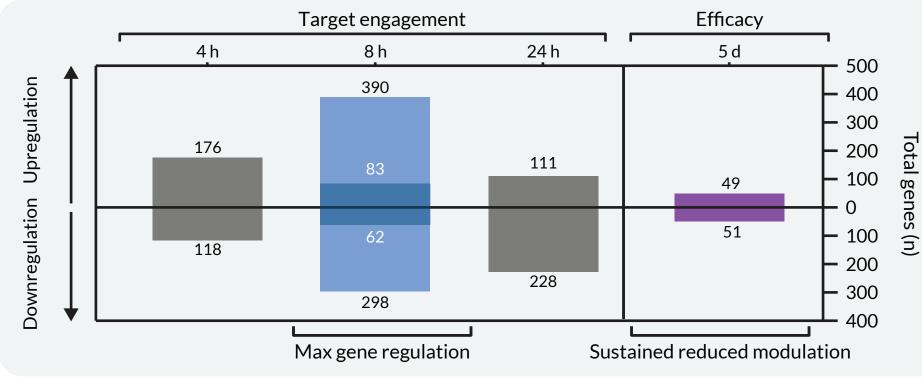
Poster 1457

CONCLUSIONS

- Miricorilant selectively modulated key genes in pathways regulating hepatic steatosis, metabolism, oxidative stress, inflammation, and fibrosis
- Early response (8 h exposure) was characterized by upregulation of genes associated with lipid metabolism, detoxification, and cellular stress responses, indicating enhanced hepatic metabolic function and immediate protection against oxidative and inflammatory stress
- Sub-chronic response (5 d exposure) was characterized by sustained upregulation of lipid metabolism regulators and downregulation of gluconeogenic enzymes, supporting long-term improvements in hepatic steatosis, insulin sensitivity, and potentially fibrosis
- Collectively, these results highlight the potential of miricorilant as a liver-targeted therapy for MASH as it operates through the selective and time-dependent modulation of key pathophysiological processes
- The ongoing phase 2b MONARCH trial (NCT06108219) is currently evaluating miricorilant in patients with biopsyconfirmed or presumed noncirrhotic MASH

BACKGROUND AND OBJECTIVE

- Cortisol has been implicated in the development and progression of MASLD^{1,2}
- Through GR activation, cortisol promotes the mobilization of energy substrates, such as FAs, to support circadian activity and stress adaptation

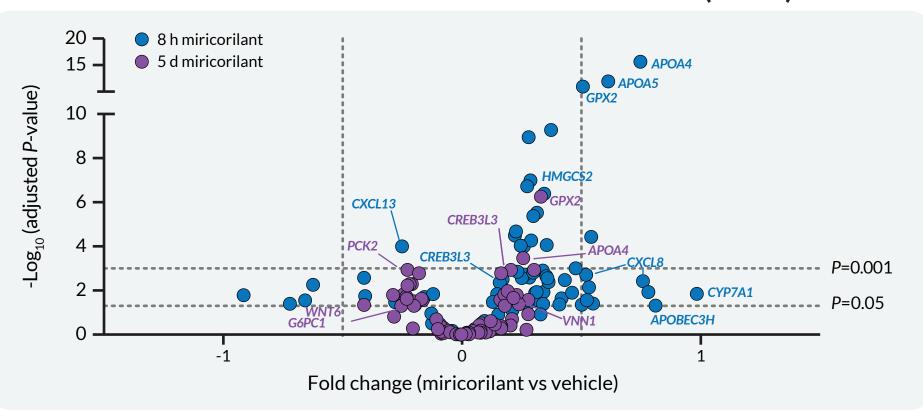

modest mineralocorticoid receptor antagonist

- Chronic or dysregulated cortisol signaling can contribute to hepatic lipid accumulation by enhancing FA uptake, reducing FA beta-oxidation, and stimulating de novo lipogenesis³
- Miricorilant is an oral, selective GR modulator that acts as a mixed GR agonist/antagonist and
- Miricorilant exhibits preferential distribution to the liver, making it a promising candidate for modulating hepatic glucocorticoid activity
- In preclinical models of MASLD/MASH, miricorilant both prevented and reversed hepatic steatosis, reduced inflammation, and improved fibrosis and NAS⁴
- In a phase 1b study (NCT05117489) in adults with presumed MASH and fibrosis, miricorilant treatment reduced liver fat content by a mean of 28.2% and improved hepatic, lipid, and glycemic biomarkers⁵
- Understanding the transcriptional regulation of hepatocytes in response to miricorilant is essential for elucidating its mechanism of action
- The objective of this study was to assess the effects of miricorilant on gene expression in vitro in human hepatocyte-like cells under simulated physiological and steatotic conditions

Time-Dependent Therapeutic Modulation of Hepatic Metabolism Analysis of miricorilant treatment under steatotic conditions revealed

Figure 2. Miricorilant Transcription Regulation vs Vehicle Under **Steatotic Conditions**

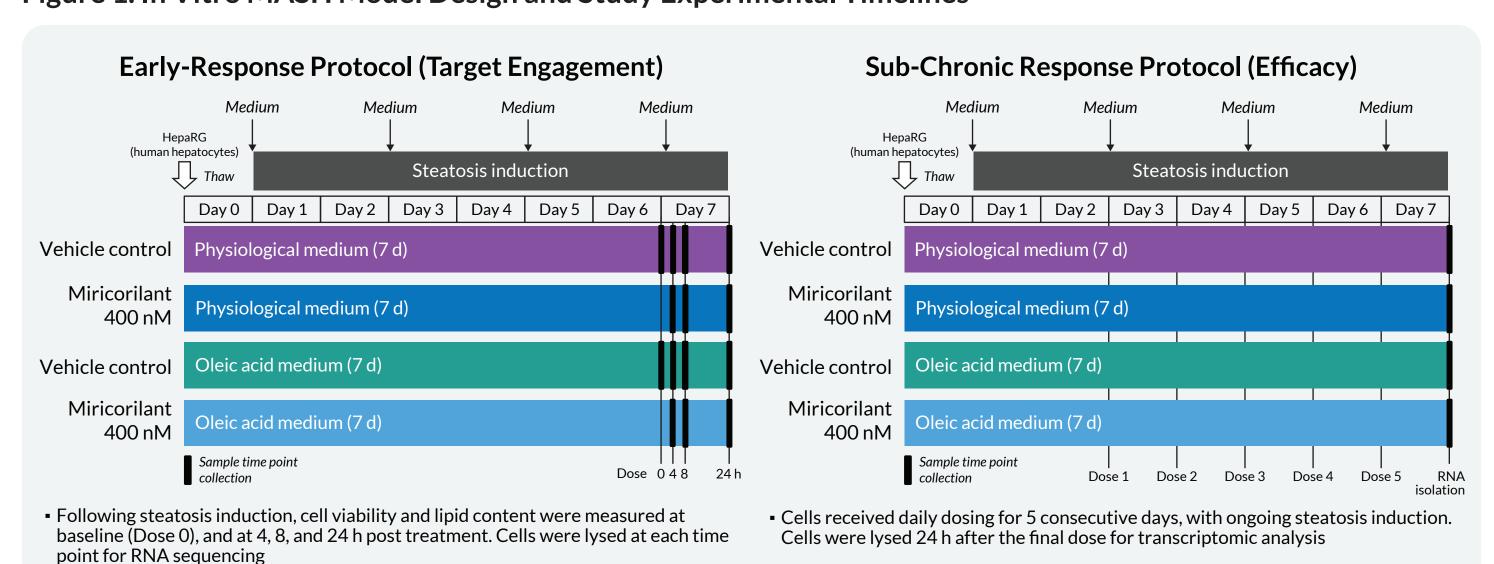
rapid and time-dependent therapeutic effects (Figure 2)



- Within 8 h, miricorilant induced significant DGE compared with the other three conditions, upregulating 390 genes and downregulating 298
- Among the upregulated genes, 83 (21.3%) were associated with lipid metabolic processes (including steroid, cholesterol, and FA processes) o 62 (20.8%) of the downregulated genes were linked to cell cycle processes (including chromosome segregation and cell division)
- This rapid shift was confirmed by a separate, statistically stringent analysis (adjusted P≤0.05; |FC|≥0.25) of the effect of miricorilant after 8 h, which identified 72 upregulated genes tied to lipid metabolism and 25 downregulated genes associated with the cell cycle
- After 5 d of treatment with miricorilant, upregulation of lipid metabolism regulators was maintained at a lower level, whereas genes related to glucose production were downregulated

Genes Modulated by Miricorilant: Early and Sub-Chronic Responses

- To characterize the transcriptomic response to miricorilant under steatotic conditions, we conducted a comparative analysis across the early response phase and the sub-chronic phase to capture both initial and sustained effects
- Differential expression analysis (adjusted P≤0.05; |FC|≥0.15) identified 459 genes whose regulation was highly time dependent, as most (83%) were unique to a single time point
- From this dataset, we selected a focused panel of 87 biologically relevant genes for deeper study (Figure 3)

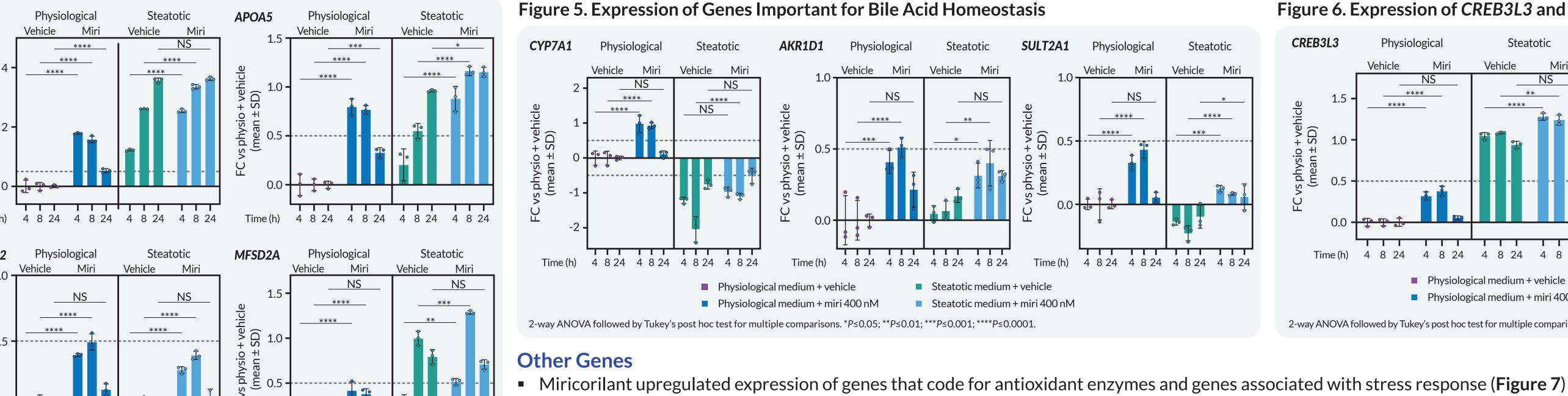

Figure 3. Fold Change in Gene Expression Between Miricorilant and **Vehicle Under Steatotic Conditions for Selected Genes (N=87)**

METHODS

- Transcriptomic analysis was performed using an in vitro MASH model with HepaRG™ cells, a human bipotent progenitor cell line capable of differentiating into hepatocyte-like cells. Cells were cultured for 7 d in either physiological or oleic acid-enriched (250 µM oleic acid diluted 1:400 in methanol) medium and treated with vehicle or miricorilant 400 nM under 2 experimental timelines (Figure 1)
- Culturing in oleic acid-enriched medium resulted in the accumulation of lipids as measured by Oil Red O staining, mimicking the effect of fatty liver

Figure 1. In Vitro MASH Model Design and Study Experimental Timelines

- RNA was extracted from lysed cells and pre-analysis of RNAseq data was processed using the Rosalind cloudbased genomics platform, which identified 19,912 unique transcripts across 54 samples
- For clustering and principal component analysis, count data were transformed using log₂ (CPM+4), applying a minimum threshold of 0.5 CPM across all samples
- DGE analysis was performed using the Limma-Voom method, with a false discovery rate cutoff of 0.1 and a minimum fold change of 1.0, with 12,236 genes passing the filter criteria
- STRING, a protein-protein interaction networks functional enrichment analysis web tool, was used to identify biological pathways significantly associated with the differentially expressed genes⁷
- Statistical analysis of early response and sub-chronic phases employed 2-way ANOVA. Comparisons included treatment effects and media conditions


Early Response

Genes Involved in Lipid Metabolism and Transport

- Miricorilant activated a range of genes that enhance lipid metabolism and export, including APOA4 and APOA5, which promote triglyceride
- secretion and regulate lipid transport out of the liver Miricorilant also induced HMGCS2, indicating a shift in liver
- Miricorilant transiently modulated other lipid-related genes like MFSD2A, FABP1, and PLIN1 (Figure 4)

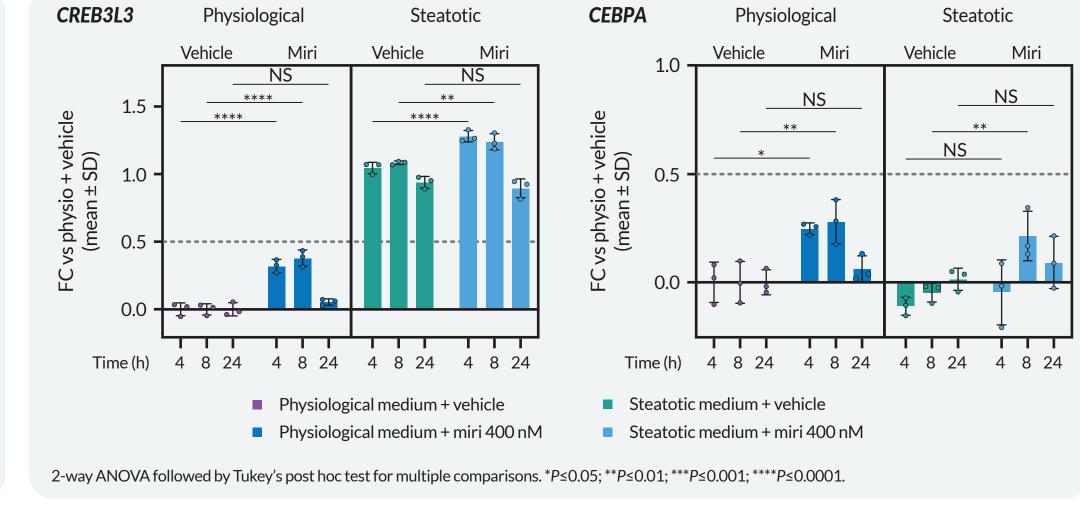
metabolism toward FA oxidation and ketogenesis

Figure 4. Expression of Genes Associated With Lipid Metabolism and Transport

RESULTS

lipid accumulation

(Figure 5)


Genes Regulating Bile Acid Homeostasis

suggested by changes in gene expression

Transcription Factors

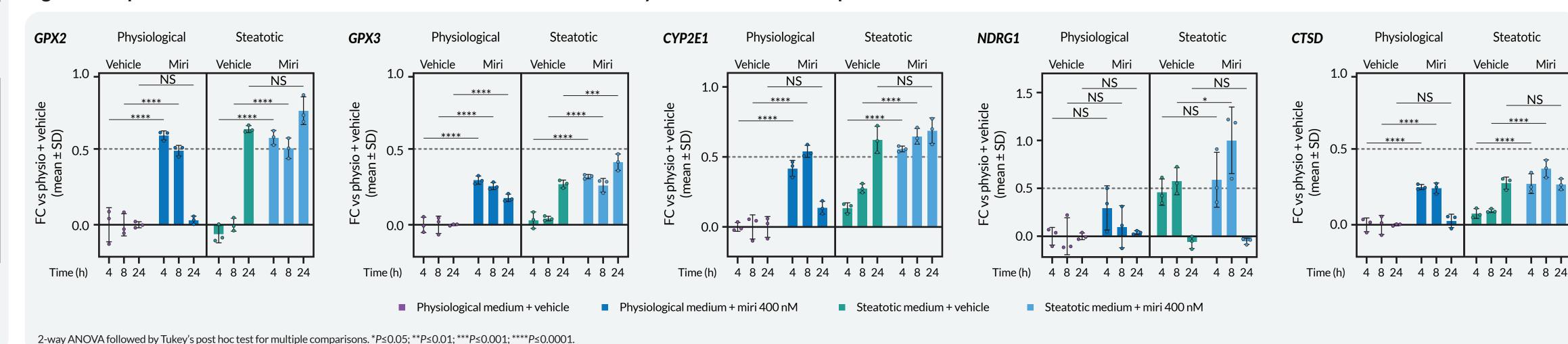
- Miricorilant modulated the expression of transcription factors CREB3L3 and CEBPA (Figure 6)
- o CREB3L3 promotes FA oxidation, reduces liver fat accumulation, inhibits de novo lipogenesis, suppresses lipid synthesis, regulates the acute phase response, and induces protective hepatokines
- CEBPA maintains healthy hepatocyte function, regulates lipid metabolism, and suppresses pro-fibrotic and inflammatory pathways
- Loss of CEBPA is linked to increased liver fibrosis and worse MASH outcomes; upregulation protects against these changes

Figure 6. Expression of CREB3L3 and CEBPA

- Miricorilant also upregulated CXCL8 and downregulated CXCL13, which play a role in hepatocyte pathways for immune cell recruitment (data not shown)

Figure 7. Expression of Genes Involved in Antioxidant/Detoxification Systems and Stress Response

Miricorilant may promote cholesterol elimination, reduce toxic bile acid accumulation, and


rate-limiting enzyme for bile acid synthesis from cholesterol, and induced AKR1D1

Miricorilant also induced SULT2A1 expression, a gene critical for bile acid detoxification

modulate hepatic lipid content, potentially mitigating liver inflammation and fibrosis, as

Miricorilant promoted the expression of CYP7A1, the gene that codes for the

expression, which is essential for proper bile acid synthesis and prevention of

Sub-Chronic Response

References

Genes Involved in Adaptive Responses in Liver Metabolism and **Cellular Protection**

- Categories of genes regulated by miricorilant after 5 d of treatment (Figure 8) included:
- Genes associated with lipid handling and antioxidant defense Upregulated APOA4, which promotes lipid export and reduced liver fat
- Upregulated CREB3L3, which supports triglyceride homeostasis and endoplasmic reticulum stress management
- Upregulated GPX2, a gene associated with antioxidant defenses against inflammation and fibrosis
- Sustained upregulation in VNN1, which impacts redox balance and metabolic pathways
- Genes associated with glucose production and metabolic flux ■ Downregulated *G6PC1* and *PCK2*, which code for key gluconeogenic enzymes
- Downregulated CYP51A1, which plays a role in cholesterol synthesis
- Downregulated GPT, which codes for a key enzyme in amino acid and intermediary metabolism
- Genes involved with cellular protection and tissue response Downregulated WNT6, which modulates cell growth and differentiation pathways

1. Rahimi L, et al. Diabetes Metab Syndr Obes. 2020;13:1133-1145.

2. Rinella ML, et al. Hepatology. 2023;77(5):1797-1835. 3. Polyzos SA

Targher G. Curr Obes Rep. 2024;13(2):242–255. 4. Koorneef LL, et al.

at: AASLD The Liver Meeting; November 10–14, 2023; Boston, MA.

6. Akhmedov M, et al. NAR Genom Bioinform. 2019;2(1):lgz019.

7. Szklarczyk D, et al. Nucleic Acids Res. 2023;51(D1):D638-D646.

Endocrinology. 2018;159(12):3925-3936. 5. Alkhouri N, et al. Presented

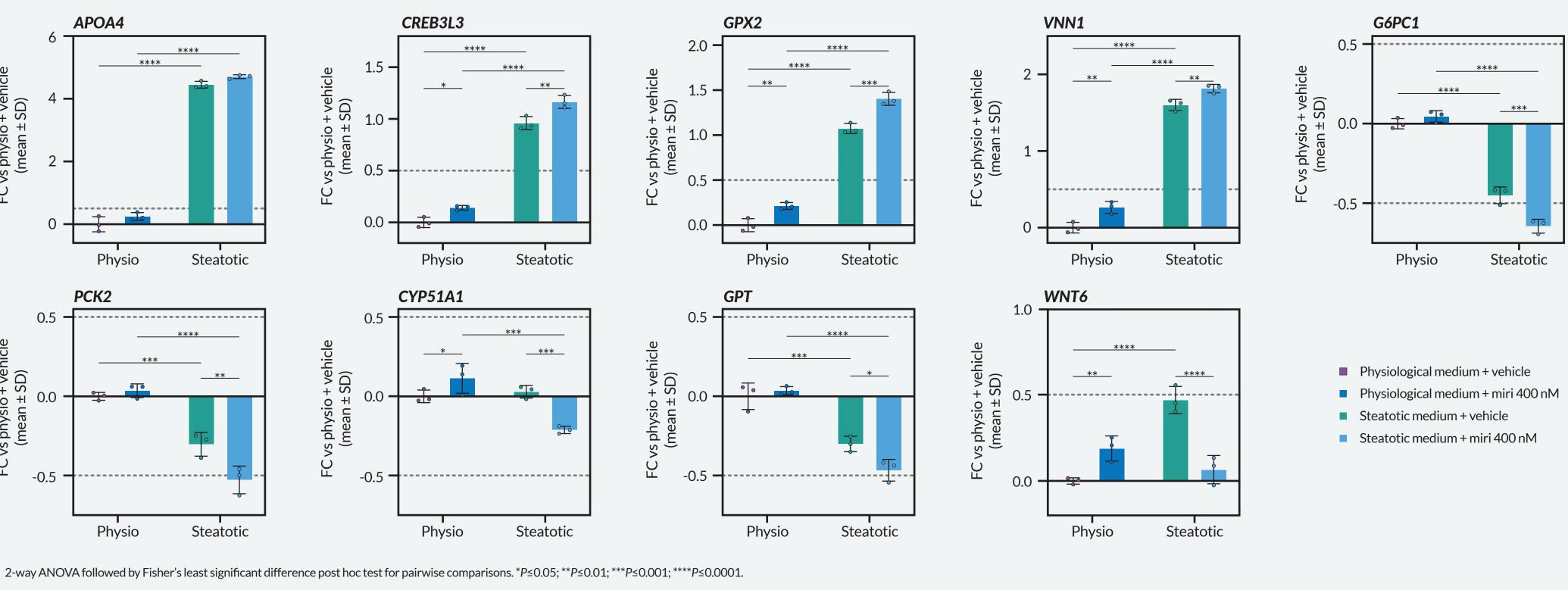
■ Expression of the gene coding for the GR (NR3C1) was detected across media and did not change with medium or treatment (data not shown)

Acknowledgments

This study was sponsored by Corcept Therapeutics

Incorporated. Medical writing assistance was provided by

Natalia Breyner). The RNA isolation and RNAseq pre-analysis


R&R Healthcare Communications. In vitro development

was provided by Physiogenex in France (Study Director:

was provided by Canopy Biosciences in the USA (Bruker

Corporation) using the Rosalind cloud-based software

Figure 8. Gene Expression Analysis After 5 d of Treatment

Presenter Disclosures Disclosure of relevant financial relationships for all and own stock in Corcept; JK is employed by Corcept.

Abbreviations

AKR, aldo-keto reductase; ANOVA, analysis of variance; APOA, apolipoprotein A; APOBEC3H, apolipoprotein B mRNA editing enzyme catalytic subunit 3H; CEBPA, CCAAT/enhancer binding protein alpha; CPM, counts per million; CREB3L3, cyclic AMP-responsive element binding protein 3-like 3; CTSD, cathepsin D; CXCL, C-X-C motif chemokine ligand; CYP, cytochrome P450; d, days; DGE, differential gene expression; FA, fatty acid; FABP, fatty acid binding protein; FC, fold change; G6PC, glucose-6-phosphatase catalytic subunit; GPT, glutamic-pyruvic transaminase; GPX, glutathione peroxidase; GR, glucocorticoid receptor; h, hours; HMGCS, hydroxymethylglutaryl-CoA synthase; MASH, metabolic dysfunction-associated steatohepatitis; MASLD, metabolic dvsfunction-associated steatotic liver disease; Max, maximum; MFSD, major facilitator superfamily domain-containing protein; miri, miricorilant; NAS, nonalcoholic fatty liver disease activity score; NDRG, N-myc downstream regulated gene; NR, nuclear receptor subfamily; NS, not significant; PCK, phosphoenolpyruvate carboxykinase; physio, physiological; PLIN, perilipin; RNAseq, RNA sequencing; SD, standard deviation; SULT, sulfotransferase; VNN, vanin; WNT, wingless-type mouse mammary tumor virus integration site.

Presented at: AASLD The Liver Meeting 2025; Nov 7–11, 2025