on the Immunosuppressive Effects of Endogenous Cortisol <u>Andrew E. Greenstein¹; Pamela N. Munster²; Jasgit C. Sachdev³; Gini F. Fleming⁴; Andreas Grauer¹; Stacie Peacock Shepherd⁵</u>

Impact of Relacorilant, a Selective Glucocorticoid Receptor Antagonist, ¹Corcept Therapeutics, Menlo Park, CA, USA; ²University of California, San Francisco, CA, USA; ³HonorHealth Research Institute/TGen, Scottsdale, AZ, USA;

BACKGROUND

CORTISOL

- Cortisol, a glucocorticoid (GC), regulates a wide range of processes, including the suppression of T-cell activation, pro-inflammatory cytokine secretion, and immune cell trafficking, by binding to the glucocorticoid receptor (GR).
- GR is expressed in most human cells and is particularly abundant in immune cells.
- Elevated GC activity has been implicated in the pathophysiology of multiple cancer types, including breast, ovarian, squamous cell, and cervical, as well as lymphomas [1-5], and is associated with poor treatment outcomes.
- Patients administered synthetic GC prior to immune checkpoint inhibitor (ICI) therapy experienced worse outcomes across multiple oncology indications [6-8].
- Similarly, patients with adrenocortical cancer (ACC) and excess systemic GC less frequently benefitted from pembrolizumab than ACC patients with normal GC levels [9, 10].
- The degree of immune suppression by <u>endogenous</u> GC and the resulting consequences for anti-tumor immune response are not fully
- Normal morning serum cortisol ranges are high enough (276-552 nM) that GR activation is expected, which is critical for normal
- However, GR activation at physiological levels also suppresses T-cell function, including the IFN γ and TNF α pathways, and alters the cellular composition of blood, depleting lymphocytes and increasing myeloid cell abundance.

RELACORILANT: A SELECTIVE GR ANTAGONIST

- Relacorilant (CORT125134, Corcept Therapeutics) is a selective cortisol modulator that:
- binds GR (K_i<1 nM),
- antagonizes GR in cells (EC₅₀ = 7.2 nM), and
- does not bind to the androgen and progesterone receptors
- (K_i>10 μM) [11]. In a Phase 1/2 study in patients with solid tumors (CORT125134-550, NCT02762981), relacorilant demonstrated clinical activity in combination with nab-paclitaxel [12].
- Phase 2 and 3 studies with relacorilant in combination with nabpaclitaxel in patients with solid tumors are underway.
- In this poster, we present in vitro, in vivo, and clinical studies that suggest that relacorilant can reverse the immunosuppressive effects of endogenous GC, making it well-suited for combination with an ICI.

METHODS

IN VITRO AND IN SILICO STUDIES

- Immune cell markers and GR expression were assessed by immunohistochemistry (IHC) in 10 triple-negative breast cancer (TNBC) and 2 melanoma samples.
- GR transcript was correlated with PD-L1 and other immune-related transcripts in data accessed from The Cancer Genome Atlas (TCGA, <u>www.cancer.gov/tcga</u>). Cellular abundance was calculated using xCell [13].
- The effects of GC and relacorilant were assessed in human peripheral blood mononuclear cells (PBMCs) from 4 donors stimulated with α CD3 + IL-12; 400 nM cortisol and 300 nM relacorilant were used. T-cell activation was measured by FACS and cytokine secretion by immunoassay.

IN VIVO STUDIES

- In a syngeneic model, EG7 tumor-bearing mice (n = 10 per group) were treated with either vehicle or α PD1 (mouse surrogate RMP1-14) ip Q5D +/- relacorilant once daily for 25 days. Mice were not treated or handled in any way intended to alter normal GC.
- Cytokines were measured by Luminex in terminal sera.

CLINICAL STUDIES

- A Phase 1/2, single-arm, non-randomized, open-label, multicenter trial in patients with solid tumors was performed to determine the preliminary efficacy of relacorilant + nab-paclitaxel (CORT125134-550, NCT02762981)
- Healthy volunteer data from a Phase 1 study were analyzed for comparison (CORT125134-120, NCT03508635).
- Whole blood was collected in PAXgene[®] tubes and RNA was quantified using nCounter[®] FLEX (NanoString).
- Lymphocyte and neutrophil abundance were determined using standard differential complete blood-count tests and the neutrophil-to-lymphocyte ratio (NLR) was calculated as the absolute neutrophil count divided by the absolute lymphocyte count.
- Cytokines were assessed by immunoassays in EDTA plasma.

RESULTS

EFFECTOR AND REGULATORY IMMUNE CELLS

- correlated with markers of immunosuppressive cells.
- pancreatic cancers (R=0.46, P<0.001) (**Figure 3A**).

CORTISOL IN HUMAN PBMCS

- T-cells were stimulated by addition of α CD3 + IL-12, and stimulation was
- assessed by profiling cell surface markers on CD4+ and CD8+ T-cells as well as secreted pro-inflammatory cytokines. Cortisol (400 nM) suppressed nearly all effects of stimulation by α CD3 + IL-12
- while relacorilant (300 nM) restored nearly all effects of stimulation that were suppressed by cortisol.
- Expression of CD137, a costimulatory immune checkpoint molecule, on CD8+ cells was induced by stimulation, suppressed by cortisol, and restored by relacorilant (P<0.001, **Figure 4A**).
- Similar effects were observed with PD-1, LAG3, CTLA-4, and TIGIT surface expression on both CD4+ and CD8+ T-cells (data not shown).
- The cytokines TNF α and IFN γ were also induced by stimulation, suppressed by cortisol, and restored by relacorilant (P=0.006 and P=0.05, respectively, Figure 4B and C).

– Similar effects were observed for IL-1 β , IL-6, and IL-2 (data not shown).

Supported by funding from Corcept Therapeutics

⁴The University of Chicago Medicine, Chicago, IL, USA; ⁵formerly Corcept Therapeutics, Menlo Park, CA, USA Contact: agreenstein@corcept.com

ATIONALE #2 FOR COMBINING ICI'S WITH RELACORILAN Activated T-cells that secrete pro-inflammatory cytokines are primary meditators of the anti-tumor immune response.

Unstim Control GC RELA GC

Unstim.Control GC RELA GC +

Stimulated

T-cell activation and cytokine secretion are suppressed by physiological concentrations of cortisol.

Stimulated

Unstim.Control GC RELA GC

Relacorilant can reverse the effect of cortisol, restoring activation and cytokine secretion.

ACKNOWLEDGEMENTS

The clinical studies (NCT02762981, NCT03508635, NCT04373265) are supported by Corcept Therapeutics. **PNM:** Investigator/Researcher, Corcept Editorial support was provided by Tina K. Schlafly of Corcept Therapeutics. Funding for editorial, design, and production JCS: Consultant/Advisor: Puma, Novartis, TTC Oncology, Ipsen, Pfizer; Investigator/Researcher, Corcept support for this poster was provided by Corcept to MedVal Scientific Information Services, LLC, Princeton, NJ. Experiments **GFF:** Consultant/Advisor: TTC Oncology; Investigator/Researcher: Corcept, Merck, Genentech, Abbvie, Syros, Leap were conducted at Ardigen SA, QualTek Molecular Laboratories, Precision for Medicine, NeoGenomics, Meso Scale Discovery nerapeutics, Compuge, Sanofi, Iovance; Speaker, Curio Science; Author Payment, UpToDate Services, Vivopharm, Ampersand Biosciences, Acepix Biosciences, Nanostring Technologies, and through clinical study **AG:** Employee, Corcept NCT02762981. The authors developed and revised the poster and provided approval of the final version. **SPS:** Employee at time of abstract submission, Corcept

Presented at the Virtual American Society of Clinical Oncology (ASCO) Annual Meeting, May 29 - June 2, 2020.

Survival Probability Vehicle α PD1 Relacorilant α PD1 + Relacorilant

Vehicle

TRANSCRIPTIONAL AND HEMATOLOGICAL EFFECTS OF **RELACORILANT SUGGEST IMPROVED IMMUNE ACTIVITY IN PHASI** 1/2 STUDY IN PATIENTS WITH ADVANCED SOLID TUMORS

RNA profiling was conducted in whole blood from patients with advanced solid tumors (predominantly pancreatic and ovarian cancer) treated with relacorilant + nab-paclitaxel (n = 46). Fold change and P value were calculated by comparing RNA counts between baseline and cycle 1 day 15 (C1D15) (Figure 8).

- Relacorilant + nab-paclitaxel suppressed the expression of canonical GR-controlled genes (*ptgs2*, *P*<0.001), confirming on-target antagonism of GR.
- Genes encoding candidate-immunomodulatory drug targets (including cxcl8, ptger4, ido1; P<0.001) were also suppressed.

Figure 8. Suppression of GR-Controlled and Candidate-Immunomodulatory Drug Target Genes in a Phase 1/2 Solid Tumor Study of Relacorilant + Nab-

Relacorilant Normalizes Elevated Neutrophil-to-Lymphocyte Ratio (NLR) in Patients with Solid Tumors

- Lower NLR is associated with improved outcomes on ICI [15].
- NLR elevations in cancer patients have been reported, but the physiological drivers are unclear.
- A higher mean baseline NLR was observed in patients with solid tumors compared with healthy subjects (**Figure 9, left**).
- Relacorilant + nab-paclitaxel significantly reduced the NLR in solid-tumor patients with elevated baseline NLR (>3) but not in patients with normal NLR at baseline (Figure 9, middle and right).
- These data suggest that elevated GC activity may contribute to high NLR, and relacorilant can normalize the NLR in some cancer patients.

gure 9. Effects of Relacorilant + Nab-Paclitaxel on NLR. Healthy volunteer ata taken from the Phase 1 study, patient data from the Phase 1/2 solid tumor study olid tumor patients with elevated NLR (>3) are shown in red; patients with normal NLR

DISCLOSURES

AEG: Employee, Corcept

Patient with Complete Response

- In the Phase 1/2 solid tumor study, complete response per RECIST 1.1 was observed in one patient with ovarian cancer during treatment with relacorilant + nab-paclitaxel. The patient's NLR declined from 5.5 (elevated) to 2.5 (normal) during the 7-day
- relacorilant lead-in preceding the first treatment cycle (Figure 10A).
- The NLR improvement was accompanied by a reduction in GR-controlled transcripts *ptgs2* and *dusp1* on day 15. The abundance of these transcripts increased above baseline as the disease later progressed, treatment with relacorilant was discontinued, and dexamethasone was eventually administered (Figure 10B).
- Plasma IFNγ slightly increased, while IL-10 decreased in this patient (**Figure 10C**).
- A decrease in T_{reg} and an increase in CD3+, CD4+, and CD8+ was observed early in treatment (**Figure 10D**).

Response

- In a subset of patients (n = 11, **Table 1**), durable clinical response was observed. These durable responses are notable given prior treatment history with nabpaclitaxel and historic data in similar patients.
- \sim Circulating blood counts: Increase in T-cell count (P=0.06), decrease in T_{regs} (P=0.06), and decrease in NLR (P=0.006 and P=0.02 on days 8 and 15).

Cancer Type	Best Response	Duration of Benefit (weeks)	Progressed on Prior Taxane?
Ovarian—High-grade serous	CR	23	No—Adjuvant
Vulvar	PR	109	Yes
Ovarian—Primary peritoneal	PR	70	No—Adjuvant
Cholangiocarcinoma	PR	59	No
PDAC	PR	54	No
PDAC	PR	50	Yes
Acinar pancreatic	PR	32	Yes
Ovarian—Low-grade serous	SD	39	No—Adjuvant
Ovarian—Low-grade serous	SD	38	Yes
PDAC	SD	37	Yes
PDAC	SD	33	Yes

RATIONALE #4 FOR COMBINING ICI'S WITH RELACORILANT

- of GR-target genes may be decreased, while IFNy and T-cells may be increased k relacorilant + nab-paclitaxel.
- High GC activity may be the cause of elevated NLR in some cancer patients. This Phase 1/2 solid tumor study suggests that NLR, T_{regs}, IL-10, and transcription

opies of this poster obtaine hrough Quick Response (QR ode are for personal use on

d may not be reproduc

and the author of this poster.

Immune Activation and Antagonism of GC Activity by Relacorilant in a

Relacorilant Improves Immune Activity in Patients with Durable

- Evidence of an immune response to relacorilant + nab-paclitaxel in these patients is indicated by the following observations (**Figure 11**).
- Plasma cytokine levels: Increase in IFN γ (P=0.03) and decrease in IL-10 (P=0.03). Whole blood RNA counts: Decreased expression of ptgs2 early in treatment (P=0.008).

These immune effects have been associated with improved response to ICI.

Figure 11. Plasma and Whole Blood Trends in Patients with Durable

CONCLUSIONS

- GR is abundantly expressed in human tumors and immune cells, and high GR
- expression is associated with high immune infiltrate and PD-L1 expression Physiological concentrations of cortisol broadly suppress human PBMC activation in vitro.
- Relacorilant, a potent, selective cortisol modulator that antagonizes GR, reverses this suppression.
- In the EG7 mouse model, relacorilant promotes α PD1 activity.
- Consistent with the effects observed in isolated human PBMCs, the ability of relacorilant to promote T-cell function and pro-inflammatory cvtokine secretion was corroborated in this model.
- Evidence of T-cell activation by relacorilant was also observed in solid-tumo patients with sustained response in a Phase 1/2 solid tumor study. • In this study, relacorilant suppressed GR-inducible genes and reduced the NLR.
- These findings support the hypothesis that relacorilant can reverse immune
- suppression by endogenous GC in solid tumor cancers.
- Clinical studies with immune checkpoint inhibitors and relacorilant are planned (eg, CORT125134-551, NCT04373265).

REFERENCES

- Abercrombie, H.C., et al., Flattened cortisol rhythms in metastatic breast cancer patients. *Psychoneuroendocrinology*, 2004. 29(8): p. 1082-92.
- Mormont, M.C. and F. Levi, Circadian-system alterations during cancer processes: a review. Int J Cancer, 1997. 70(2): p. 241-7.
- Sharma, P., et al., Estimation of cortisol levels in patients with premalignant disorders and oral squamous cell carcinoma. J Oral Maxillofac Pathol, 2018. 22(1): p. 27-34.
- 4. Palesh, O., et al., Vagal regulation, cortisol, and sleep disruption in women with metastatic breast cancer. J Clin Sleep Med, 2008. 4(5): p. 441-9.
- . Jehn, C.F., et al., Association of IL-6, hypothalamus-pituitary-adrenal axis function, and depression in patients with cancer. Integr Cancer Ther, 2010. 9(3): p. 270-5.
- Arbour, K.C., et al., Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer. J Clin Oncol, 2018. 36(28): p. 2872-2878.
- Scott, S.C. and N.A. Pennell, Early Use of Systemic Corticosteroids in Patients with Advanced NSCLC Treated with Nivolumab. J Thorac Oncol, 2018. 13(11): p. 1771-1775.
- Fuca, G., et al., Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors. ESMO Open, 2019. 4(1): p. e000457.
- Habra, M.A., et al., Phase II clinical trial of pembrolizumab efficacy and safety in advanced adrenocortical carcinoma. J Immunother Cancer, 2019. 7(1): p. 253.
- 0. Head, L., et al., Response to Immunotherapy in Combination With Mitotane in Patients With Metastatic Adrenocortical Cancer. J Endocr Soc, 2019. 3(12): p. 2295-2304.
- 11. Hunt, H.J., et al., Identification of the Clinical Candidate (R)-(1-(4-Fluorophenyl)-6-((1-methyl-1H-pyrazol-4-yl)sulfonyl)-4,4a,5,6,7,8-hexah ydro-1H-pyrazolo[3,4-g]isoquinolin-4a-yl)(4-(trifluoromethyl)pyridin-2-yl) methano ne (CORT125134): A Selective Glucocorticoid Receptor (GR) Antagonist. J Med Chem, 2017. 60(8): p. 3405-3421
- 2. Munster, P.N., et al., Relacorilant (RELA) with nab-paclitaxel (NP): Safety and activity in patients with pancreatic ductal adenocarcinoma (PDAC) and ovarian cancer (OvCA). J Clin Oncol, 2019. 37(15_suppl): p. 4130-4130.
- 3. Aran, D., Z. Hu, and A.J. Butte, xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol, 2017. 18(1): p. 220.
- . Nakamura, Y., Biomarkers for Immune Checkpoint Inhibitor-Mediated Tumor Response and Adverse Events. Front Med (Lausanne), 2019. 6: p. 119.
- 5. Lalani, A.A., et al., Change in Neutrophil-to-lymphocyte ratio (NLR) in response to immune checkpoint blockade for metastatic renal cell carcinoma. J Immunother Cancer, 2018. 6(1): p. 5.